AutoCAD中约定:凸度为0是直线顶点,它与下一个顶点连接为一直线;凸度不为0是圆弧顶点,它与下一个顶点连接为一圆弧;凸度值为负表示顺时针圆弧,凸度值为正表示逆时针圆弧;凸度绝对值小于1表示圆弧包角小于180°,凸度绝对值大于1表示圆弧包角大于180°。凸度与圆弧包角的关系是:圆弧包角=4×arctan|凸度值|。
多义线的直线顶点和圆弧顶点都只保存了直线和圆弧的起点标志,终点坐标则都保存在下一个顶点中。
Autolisp语言提供了读取顶点实体组码数据的函数,因此,可以很方便地知道多义线各顶点的坐标值和凸度值,再通过坐标系转换和计算,就得到了零件轮廓线上直线段的起点、终点坐标和圆弧段的起点、终点、半径、圆心等几何信息。
今天
郑州CAD培训为大家讲一讲与刀具运动轨迹有关的因素
刀具运动轨迹不仅与零件轮廓形状有关,还与该轮廓是零件的内表面还是外表面、加工方式是顺铣还是逆铣、铣刀半径、公差尺寸、加工变形等诸因素有关。
加工零件内表面:顺铣时,刀具按逆时针方向运动(主轴正转,下同)(见图1a),逆铣时,则刀具按顺时针方向运动加工零件外表面:正好相反,顺铣时,刀具顺时针运动(见图1c),逆铣时,则刀具逆时针运动(见图1d)
刀具中心与零件轮廓线的距离除了铣刀半径外,还要考虑尺寸公差和加工时“让刀”变形的情况,若按名义尺寸进行加工,一般内表面尺寸偏小,外表面尺寸偏大,因此,必须设置一个调整变量,用于对名义尺寸进行调整。
此外,对非平滑过渡的连接处,要考虑圆弧过渡方式(也可用其它过渡方式)。
三、刀具中心轨迹的计算
计算刀具中心轨迹是按刀具运动方向,依次取出多义线顶点实体的数据进行计算和转换。首先根据凸度值判断顶点的性质,由此确定对象是直线还是圆弧。如果是直线顶点,则先取得该顶点和下一个顶点的坐标值,再根据加工方式,用Polar函数分别把直线的两个端点沿起点到终点方向加90°(顺铣)或减90°(逆铣)后,移动刀具半径和调整变量之差的距离,得到刀具中心的起点和终点坐标。
如果是圆弧顶点,则先取得该顶点的坐标值和凸度值以及下一个顶点的坐标值,计算出圆心和半径,再把两端点沿圆心方向(凹弧)或与圆心相反方向(凸弧)移动刀具半径和调整变量之差的距离。
一段直线或一段圆弧是上述算法,当它们组合在一起时,情况要复杂一些,主要是判断它们在连接处是否需要过渡圆弧以及是否重复计算。一般来讲,两直线衔接,要有过渡圆弧;直线和圆弧或两圆弧衔接,相切时不需要过渡圆弧,且相切处只需计算一点,不相切时需要过渡圆弧。
特殊情况下,圆弧半径与刀具半径相等的凹圆弧,后接相切直线或圆弧,均可不需计算。
值得注意的是,上述计算的前提是多义线的顶点排列顺序与刀具运动方向是一致的。而用Bpoly命令形成的多义线的顶点在图形数据库中总是按逆时针方向排列保存的,且排列的起点与生成多义线时的选择点有关,因此,在计算前必须先确定刀具运动方向。当刀具是顺时针运动时,则需要颠倒顶点原来的排列顺序,且要改变顶点的性质,即直线顶点改为圆弧顶点,圆弧顶点改为直线顶点。